Skip to content Skip to sidebar Skip to footer

Widget Atas Posting

arccos (x) + arccos (y) = arccos {(xy-√(1 – x^2) √(1 – y^2)}

Kita akan belajar bagaimana membuktikan sifat invers fungsi trigonometri$arccos\alpha +arccos\beta =arccos\left (xy - \sqrt{1-x^2 }.\sqrt{1-y^2 } \right )$

Misalkan, cos−1 x = α dan cos−1 y = 𝛽

Dari cos−1 x = α diperoleh,

x = cos α

dan dari cos−1 y = 𝛽 kita peroleh,

y = cos 𝛽

karena cos (α + 𝛽) = cosα cos 𝛽 – sin αsin 𝛽, maka$\Rightarrow cos(\alpha +\beta )=cos\alpha cos\beta - \sqrt{1-cos^2\alpha }.\sqrt{1-cos^2\beta }$ 

$\Rightarrow cos(\alpha +\beta )=xy - \sqrt{1-x^2 }.\sqrt{1-y^2 }$ 

$\Rightarrow \alpha +\beta =cos^{-1}\left (xy - \sqrt{1-x^2 }.\sqrt{1-y^2 } \right )$ $\Rightarrow cos^{-1}\alpha +cos^{-1}\beta =cos^{-1}\left (xy - \sqrt{1-x^2 }.\sqrt{1-y^2 } \right )$ 

Oleh karena itu $arccos\alpha +arccos\beta =arccos\left (xy - \sqrt{1-x^2 }.\sqrt{1-y^2 } \right )$

Catatan: Jika x > 0, y > 0 dan x2 + y2 > 1, maka cos−1 x + sin−1 y dapat berupa sudut lebih dari 𝜋/2 $cos^{-1}\left (xy - \sqrt{1-x^2 }.\sqrt{1-y^2 } \right )$ sedangkan adalah sudut antara – 𝜋/2 dan 𝜋/2.

karena itu  $cos^{-1}x +cos^{-1}y = \pi -cos^{-1}\left (xy - \sqrt{1-x^2 }.\sqrt{1-y^2 } \right )$

Contoh Soal 1

Jika , $cos^{-1}\frac{x}{a}+cos^{-1}\frac{y}{a}=\alpha$  Buktikan$\frac{x^2}{a^2}-\frac{2xy}{ab}cos\alpha +\frac{x^2}{b^2}=sin^2\alpha $

Jawab:

Kita punya $cos^{-1}x +cos^{-1}y = \pi -cos^{-1}\left (xy - \sqrt{1-x^2 }.\sqrt{1-y^2 } \right )$

$\Rightarrow cos^{-1}\left [ \frac{x}{a}.\frac{y}{b}-\sqrt{1-\frac{x^2}{a^2}}.\sqrt{1-\frac{y^2}{b^2}} \right ]=\alpha $ 
$\Rightarrow \left [ \frac{x}{a}.\frac{y}{b}-\sqrt{1-\frac{x^2}{a^2}}.\sqrt{1-\frac{y^2}{b^2}} \right ]=cos\alpha $ 
$\Rightarrow \frac{xy}{ab}-cos\alpha =\sqrt{(1-\frac{x^2}{a^2})(1-\frac{y^2}{b^2})} $ 
$\Rightarrow \left (\frac{xy}{ab}-cos\alpha \right )^2 =(1-\frac{x^2}{a^2})(1-\frac{y^2}{b^2}) $ 
$\Rightarrow \frac{x^2y^2}{a^2b^2}-2\frac{xy}{ab}cos\alpha +cos^2\alpha =1-\frac{x^2}{a^2}-\frac{y^2}{b^2}+\frac{x^2y^2}{a^2b^2} $ 
$\Rightarrow \frac{x^2}{a^2}-2\frac{xy}{ab}cos\alpha +\frac{y^2}{b^2} =1-cos^2\alpha$ 
$\Rightarrow \frac{x^2}{a^2}-2\frac{xy}{ab}cos\alpha +\frac{y^2}{b^2} =sin^2\alpha$. Terbukti 

Contoh Soal 2
Jika cos−1 x + cos−1 y + cos−1 z = , buktikan bahwa x2 + y2 + z2 + 2xyz = 1.

Jawab:

cos−1 x + cos−1 y + cos−1 z =

cos−1 x + cos−1 y = - cos−1 z

cos−1 x + cos−1 y = cos−1 (-z), [karena, cos−1 (-θ) = 𝜋 - cos−1 θ]$cos^{-1}\left (xy - \sqrt{1-x^2 }.\sqrt{1-y^2 } \right )=cos^{-1}(-z)$

$\left (xy - \sqrt{1-x^2 }.\sqrt{1-y^2 } \right )=(-z)$


$xy +z= \sqrt{1-x^2 }.\sqrt{1-y^2 }$

sekarang kuadratkan kedua ruas

$\Rightarrow \left (xy +z \right )^2= (1-x^2)(1-y^2)$


$\Rightarrow x^2y^2+z^2+2xyz=1-x^2-y^2+x^2y^2$


$\Rightarrow x^2+y^2+z^2+2xyz=1 $. Terbukti



Invers Fungsi Trigonometri


Silakan Klik Jika beri Komentar

Post a Comment for "arccos (x) + arccos (y) = arccos {(xy-√(1 – x^2) √(1 – y^2)}"