Soal 1: UM STIS 2017$\sqrt{3- \sqrt{5}} + \sqrt{3+ \sqrt{5}} = . . .$
(A) $2 \sqrt{3}$
(B) $\sqrt{10}$
(C) $2 \sqrt{2}$
(D) $\sqrt{11}$
(E) $3 \sqrt{2}$
PEMBAHASAN:
Pertama kita akan ubah bentuk akar $\sqrt{a \pm \sqrt{b}}$ menjadi $\sqrt{(a+b) \pm 2\sqrt{ab}} = \sqrt{a} \pm \sqrt{b}$,maka dari soal
$\begin{aligned}
\sqrt{3 \pm \sqrt{5}} &= \sqrt{3 \pm 2 \sqrt{\frac{5}{4}}} \\
&= \sqrt{3 \pm 2 \sqrt{\frac{5}{4}}}\\
&= \sqrt{\frac{5}{2} + \frac{1}{2} \pm 2 \sqrt{\frac{5}{2}.\frac{1}{2}}}\\
\sqrt{3 \pm \sqrt{5}} &= \sqrt{\frac{5}{2}} \pm \sqrt{\frac{1}{2}},\ atau \\
\sqrt{3 +\sqrt{5}} &= \sqrt{\frac{5}{2}} + \sqrt{\frac{1}{2}},\ dan \\
\sqrt{3 -\sqrt{5}} &= \sqrt{\frac{5}{2}} - \sqrt{\frac{1}{2}} \\
\end{aligned}$
maka
$\begin{aligned}
\sqrt{3 -\sqrt{5}} + \sqrt{3 +\sqrt{5}} &= \sqrt{\frac{5}{2}} - \sqrt{\frac{1}{2}} + \sqrt{\frac{5}{2}} + \sqrt{\frac{1}{2}} \\
&= 2 \sqrt{\frac{5}{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
&= 2\sqrt{\frac{10}{4}}= 2. \frac{1}{2} \sqrt{10}\\
\sqrt{3 -\sqrt{5}} + \sqrt{3 +\sqrt{5}} &= \sqrt{10}\end{aligned}$
Jadi, pilihan jawabannya adalah (B), $\sqrt{10}$
Soal 2: UM UNDIP 2010 Kode 102Bentuk sederhana dari $\sqrt{\frac{\sqrt{41}+4}{\sqrt{41}-4}} -\sqrt{\frac{\sqrt{41}-4}{\sqrt{41}+4}}$ adalah . . .
(A) $- \frac{8}{5}$
(B) $0$
(C) $\frac{16}{5}$
(D) $\frac{8}{5}$
(E) $5 \sqrt{41}$
PEMBAHASAN:
$\sqrt{\frac{\sqrt{41}+4}{\sqrt{41}-4}} -\sqrt{\frac{\sqrt{41}-4}{\sqrt{41}+4}}$
= $\sqrt{\frac{\sqrt{41}+4}{\sqrt{41}-4} \times \frac{\sqrt{41}+4}{\sqrt{41}+4}} -\sqrt{\frac{\sqrt{41}-4}{\sqrt{41}+4} \times \frac{\sqrt{41}-4}{\sqrt{41}-4}}$
= $\sqrt{\frac{(\sqrt{41}+4)^2}{41-16}} -\sqrt{\frac{(\sqrt{41}-4)^2}{41-16}}$
= $\sqrt{\frac{(\sqrt{41}+4)^2}{25}} -\sqrt{\frac{(\sqrt{41}-4)^2}{25}}$
= $\frac{\sqrt{41}+4}{5} - \frac{\sqrt{41}-4}{5}$
= $\frac{\sqrt{41}+4-\sqrt{41}+4}{5} = \frac{8}{5}$
Jadi, pilihan jawabannya adalah (D), $\frac{8}{5}$</
Soal 3: SBMPTN 2015 Kode 634/610
Jika $\sqrt[4]{a} +\sqrt[4]{9} = \frac{1}{2 - \sqrt{3}}$ maka $a = . . .$.
(A) $2 - \sqrt{2}$
(B) $2$
(C) $2 + \sqrt{2}$
(D) $8$
(E) $16$
PEMBAHASAN:
$\begin{aligned}
\sqrt[4]{a} +\sqrt[4]{9} &= \frac{1}{2 - \sqrt{3}} \\
\sqrt[4]{a} + 3^{2 \times \frac{1}{4}} &= \frac{1}{2 - \sqrt{3}} \times \frac{2 + \sqrt{3}}{2 + \sqrt{3}} \\
\sqrt[4]{a} + \sqrt{3} &=2 + \sqrt{3}\\
\sqrt[4]{a} &= 2 \\
a &= 2^4 = 16\end{aligned}$
Jadi, pilihan jawabannya adalah (E), $16$</
Soal 4: UM UGM 2017 Kode 723
Jika $r = \frac{20 \sqrt{2} -25}{(10 + 20 \sqrt{2})(2 - \sqrt{2})}$ maka $(4r - 2)^2 = . . .$.
(A) $5$
(B) $4$
(C) $3$
(D) $2$
(E) $1$
PEMBAHASAN:
Pertama kita mengubah bentuk r ke dalam bentuk yang paling sederhana $\begin{aligned} r &= \frac{20 \sqrt{2} -25}{(10 + 20 \sqrt{2})(2 - \sqrt{2})} \\
r& = \frac{20 \sqrt{2} -25}{20 - 10 \sqrt{2}+40 \sqrt{2} -40}\\
& = \frac{20 \sqrt{2} -25}{30\sqrt{2} - 20}\\
& = \frac{5}{10}\left (\frac{4 \sqrt{2} -5}{3\sqrt{2} - 2} \right )\\
& = \frac{1}{2}\left (\frac{4 \sqrt{2} -5}{3\sqrt{2} - 2} \right ) \times \frac{3\sqrt{2}+2}{3\sqrt{2}+2}\\
& = \frac{1}{2}\ .\ \frac{24+8 \sqrt{2} - 15 \sqrt{2} -10}{18-4}\\
& = \frac{1}{2}\ .\ \frac{14-7 \sqrt{2} }{14}\\
& = \frac{1}{2}\ .\ \frac{7}{14} \ . \ (2- \sqrt{2})\\
r & = \frac{1}{4}(2- \sqrt{2})\
\end{aligned}$
maka nilai dari
$\begin{aligned} (4r-2)^2 &= \left [4 \times \frac{1}{4}(2- \sqrt{2}) -2\right ]^2\\
& = (2 - \sqrt{2}-2)^2\\
& = (- \sqrt{2})^2 = 2\end{aligned}$
Jadi, pilihan jawabannya adalah (D), $2$</
Soal 5: UM UGM 2013 Kode 251
$\frac{\sqrt{18} - \sqrt{12}}{\sqrt{18} + \sqrt{12}} + \frac{5}{1+ \sqrt{6}} = . . .$
(A) $\sqrt{6}$
(B) $1 - \sqrt{6}$
(C) $\sqrt{2} + \sqrt{3}$
(D) $4 - \sqrt{6}$
(E) $5 - 2 \sqrt{6}$
PEMBAHASAN:
$\frac{\sqrt{18} - \sqrt{12}}{\sqrt{18} + \sqrt{12}} + \frac{5}{1+ \sqrt{6}}$
= $\frac{\sqrt{9.2} - \sqrt{4.3}}{\sqrt{9.2} + \sqrt{4.3}} + \frac{5}{1+ \sqrt{6}}$
= $\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \frac{5}{1+ \sqrt{6}}$
= $\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} \times \frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} - 2\sqrt{3}} + \frac{5}{1+ \sqrt{6}} \times \frac{1- \sqrt{6}}{1- \sqrt{6}}$
= $\frac{18+12-12 \sqrt{6}}{18-12} + \frac{5{(1- \sqrt{6})}}{1-6}$
= $\frac{30-12 \sqrt{6}}{6} + \frac{5(1- \sqrt{6})}{-5}$
= $5 - 2\sqrt{6} - 1 + \sqrt{6}$
= $4 - \sqrt{6}$
Jadi, pilihan jawabannya adalah (D), $4 - \sqrt{6}$</
Soal 6: SIMAK UI 2009 Kode 912
Nilai dari $\frac{1}{1+ \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}} + . . . + \frac{1}{\sqrt{63} + \sqrt{64}} = . . .$
(A) $10$
(B) $9$
(C) $8$
(D) $7$
(E) $6$
PEMBAHASAN:
Kita terlebih dahulu merasionalkan penyebut dari setiap suku.
$\Rightarrow \frac{1}{1+ \sqrt{2}} \times \frac{1- \sqrt{2}}{1- \sqrt{2}} = -1 + \sqrt{2}$
$\Rightarrow \frac{1}{\sqrt{2} + \sqrt{3}} \times \frac{\sqrt{2}- \sqrt{3}}{\sqrt{2} - \sqrt{3}} = -\sqrt{2} + \sqrt{3}$
$\Rightarrow \frac{1}{\sqrt{3} + \sqrt{4}} \times \frac{\sqrt{3}- \sqrt{4}}{\sqrt{3} - \sqrt{4}} = -\sqrt{3} + \sqrt{4}$
seterusnya
$\Rightarrow \frac{1}{\sqrt{62} + \sqrt{63}} \times \frac{\sqrt{62}- \sqrt{63}}{\sqrt{62} - \sqrt{63}} = -\sqrt{62} + \sqrt{63}$
$\Rightarrow \frac{1}{\sqrt{63} + \sqrt{64}} \times \frac{\sqrt{63}- \sqrt{64}}{\sqrt{63} - \sqrt{64}} = -\sqrt{63} + \sqrt{64}$
maka
$\frac{1}{1+ \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}} + . . . + \frac{1}{\sqrt{63} + \sqrt{64}}$
= $-1 + \sqrt{2} - \sqrt{2} + \sqrt{3} + ... + \sqrt{63} - \sqrt{63} + \sqrt{64}$
= $-1 + \sqrt{64}$
= $-1 + 8 = 7$
Jadi, pilihan jawabannya adalah (D), $7$</
Soal 7: SPMB 2007 Kode 341
Jika dirasionalkan maka $1 + \frac{1}{\sqrt{2}} + \frac{1}{1- \sqrt{2}} = . . .$
(A) $-1 - \frac{1}{2} \sqrt{2}$
(B) $-1 - \sqrt{2}$
(C) $- \frac{1}{2} \sqrt{2}$
(D) $\frac{1}{2}$
(E) $2 + \frac{1}{2} \sqrt{2}$
PEMBAHASAN:
Kita rasionalkan satu per satu kemudia kita jumlahkan:
$\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{1}{2} \sqrt{2}$
$\frac{1}{1-\sqrt{2}} \times \frac{1+\sqrt{2}}{1+\sqrt{2}} = -1- \sqrt{2}$
Jadi
$1 + \frac{1}{\sqrt{2}} + \frac{1}{1- \sqrt{2}}$
= $1 + \frac{1}{\sqrt{2}} - 1 - \sqrt{2}$
= $-\frac{1}{\sqrt{2}}\sqrt{2}$
Jadi, pilihan jawabannya adalah (C), $- \frac{1}{2} \sqrt{2}$</
Soal 8: SPMB 2007 Kode 341
Jika $\sqrt{0,3 + \sqrt{0,08}} = \sqrt{a} + \sqrt{b}$, maka $\frac{1}{a} + \frac{1}{b} = . . .$
(A) $25$
(B) $20$
(C) $15$
(D) $10$
(E) $5$
PEMBAHASAN:
Kita gunakan terorema $\sqrt{(a+b)+2\sqrt{ab}}=\sqrt{a} + \sqrt{b}$, maka
$\sqrt{0,3 + \sqrt{0,08}}$
= $\sqrt{\frac{3}{10} + \sqrt{\frac{8}{100}}}$
= $\sqrt{\frac{3}{10} + \sqrt{4.\frac{2}{100}}}$
= $\sqrt{\frac{3}{10} + 2\sqrt{\frac{2}{100}}}$
= $\sqrt{\frac{1}{10} + \frac{2}{10} + 2\sqrt{\frac{1}{10} \times \frac{2}{10}}}$
= $\sqrt{\frac{1}{10}} + \sqrt{\frac{2}{10}} $
maka nilai $a = \frac{1}{10}$ dan $b = \frac{2}{10}$, jadi
$\frac{1}{a} + \frac{1}{b} = \frac{10}{1} + \frac{10}{2}=15$
Jadi, pilihan jawabannya adalah (C), $15$</
Soal 9: SIMAK UI 2015 Kode 567
Bentuk sederhana dari $\frac{\sqrt{143} + \sqrt{165} + \sqrt{195} + 13}{\sqrt{11} + 2\sqrt{13} + \sqrt{15}}$ adalah . . .
(A) $\frac{1}{2}(\sqrt{15} + \sqrt{13})$
(B) $\frac{1}{2} \frac{\left (\sqrt{15}- \sqrt{13} \right )}{\left (\sqrt{15} + \sqrt{13} \right )}$
(C) $\frac{1}{2}(\sqrt{15}-\sqrt{11})$
(D) $\frac{1}{2}(\sqrt{15}+\sqrt{11})$
(E) $\frac{\left (\sqrt{15}- \sqrt{11} \right )}{\left (\sqrt{15} + \sqrt{11} \right )}$
Soal 10: SPMB 2006 Kode 510
Jika bilangan bulat a dan b memenuhi $\frac{\sqrt{5} - \sqrt{6}}{\sqrt{5} + \sqrt{6}} = a + b \sqrt{30}$ maka $ab = . . . $
(A) $-22$
(B) $-22$
(C) $-9$
(D) $2$
(E) $13$
PENYELESAIAN:
$\begin{aligned} \frac{\sqrt{5} - \sqrt{6}}{\sqrt{5} + \sqrt{6}} &= \frac{\sqrt{5} - \sqrt{6}}{\sqrt{5} + \sqrt{6}} \times \frac{\sqrt{5} - \sqrt{6}}{\sqrt{5} - \sqrt{6}} \\
&= \frac{5+6-2 \sqrt{30}}{5-6}\\ &= -11 + 2\sqrt{30}
\end{aligned}$
maka a = -11 dan b = 2, maka ab = -22
Jadi, pilihan jawabannya adalah (B), $-22$</
Location:
Post a Comment for "Soal dan Pembahasan Bentuk Akar"
Sobat Ayo Sekolah Matematika! Berikan Komentar di kolom komentar dengan bahasa yang sopan dan sesuai isi konten...Terimasih untuk kunjunganmu di blog ini, semoga bermanfaat!